A High Precision Measurement of the Deuteron Spin-Structure Function Ratio g₁/F₁

PAC 31, January 2007

- > Motivation
- > Proposed Experiment
- >Expeced Results

Spin Structure of the Nucleon

- ➤ Spin sum rule: total spin 1/2 formed by quarks (small), gluons, and orbital angular momentum (sum of these must be big).
- ➤ How much carried by gluons?: major focus of large experimental program worldwide (HERMES, RHIC-Spin, COMPASS, JLab, ...).
- ➤ Jlab is contributing to this program already: one of DOE milestone for JLab is precision measurement of spin structure to Q²=4 GeV²

Polarized DIS

- ➤ As for un polarized case, theoretically cleanest was to learn about polarized gluons is through pQCD evolution in deep inelastic scattering (DIS)
- $ightharpoonup Q^2$ -dependence at fixed x determined by gluon radiation [log(Q²)]. Wilson coefficients calculated to NLO in pQCD.

$$g_1(x,Q^2)_{_{\mathrm{pQCD}}} = rac{1}{2} \sum e_q^2 \left[\left(\Delta q + \Delta \overline{q}
ight) \, \otimes \left(1 + rac{lpha_s(Q^2)}{2\pi} \delta C_q
ight) + rac{lpha_s(Q^2)}{2\pi} \Delta G \, \otimes rac{\delta C_G}{N_f}
ight]$$

➤ Complication: non-perturbative higher twist contributions contribute at low Q² (power law behavior).

Valence Quarks

- Pretty well known now, primarily from measurements of proton and neutron g₁
- Will learn more from SIDIS in future.

Gluons and Sea Quarks

- Gluon polarization poorly known (just that not maximal, probably positive). Need more precise data! Main goal of this experiment.
- Sea quark knowledge will improve with SIDIS Studies in future.

Complementary to RHIC-SPIN

- Measurements such as π^0 from STAR (left) and PHENIX (right) as a function of pt probe x<0.1.
- This proposal sensitive to x>0.1.
- Results so far rule out ∆G=G.

Why deuteron best for $\delta G(x)$?

$$g_1^{p(n)}(x,Q^2) = \frac{1}{9} [(\pm \frac{3}{4} \Delta q_3 + \frac{1}{4} \Delta q_8 + \Delta \Sigma) \otimes (1 + \frac{\alpha_s(Q^2)}{2\pi} \delta C_q) + \frac{\alpha_s(Q^2)}{2\pi} \Delta G \otimes \delta C_G]$$

- The $3q_3$ term cancels in deuteron, and q_3 about twice magnitude of q_8 and $\Delta\Sigma$
- Relative gluon contributions largest in deuteron: relevant because experimental errors dominated by systematic scale factors.

Existing and proposed data

Kinematic Coverage

Physics Impact

- Generated "fake" data points of this proposal following simple model.
- Sent to LSS group to include in fit to world data using NLO pQCD plus phenomenological Higher Twist (HT). This group has found recent Jlab data already has significant impact.
- Also sent to AAC group to include in their NLO pQCD analysis of world data

Physics Impact in LSS framework

Impact on polarized quark distributions relatively small

Physics Impact

⁶Li as Polarized Deuteron

- Most high Q² experiments used (SLAC) or are using (COMPASS) ⁶LiD as target (blue points on next slide).
- ⁶Li treated as unpolarized alpha particle plus deuteron with polarization 87% that of the free proton (ratio magnetic moments)
- If this assumption wrong, will bias Q² dependence of g_{1d} and hence extracted gluon polarization. Global problem we can solve.

Existing and proposed data

Nuclear effects in ⁶Li

Experimental Setup

- Longitudinally polarized beam 4-pass and 5-pass (>5.7 GeV), 100 nA
- •Uva/Jlab/SLAC Polarized target setup with longitudinally polarized ND₃ and ⁶LiD
- •Inclusive electrons detected in BETA centered at 30 degrees (and HMS)
- •Identical to approved Semi-SANE experiment except for trigger (single-arm instead of coincidence).

Experimental Setup

Systematic Errors

source	p-t-p	overall
$P_b \ P_t$	-	2.8%
dilution	1%	1.5%
pair-symmetric contribution	2%	-
pion contamination	2%	-
radiative corrections	1%	1.5%
$^7{ m LiD}$ and $^6{ m LiH}$	1%	2%
pile-up, dead time	1%	1%
Total		4.1%

Quasi-elastic Measurements

- At low Q², deuteron quasi-elastic peak clearly visible in HMS spectrometer (see next slide).
- •Use absolute cross sections to measure D content of the ND₃ target. Cross check of ratio of ND₃ to C rates in BETA and HMS.
- •Use double-spin asymmetry to obtain product beam and target polarization (compare with full calculation of Arenhoevel including MEC and FSI). Cross check with beam Moller and target NMR.

Quasi-elastic Measurements

Request

E (GeV)	target	$ heta_{BETA}$	$ heta_{HMS}$	P_{HMS}	days
6.	ND_3	3 0.	10.8	± 2.71	8
6.	$^6{ m LiD}$	3 0.	10.8	± 2.71	6
4.8	ND_3	3 0.	12 .	-4.3	2
4.8	ND_3	3 0.	16.	-2.8	3

- 19 days production (12 shared with Semi-SANE, 7 new)
- 5 days overhead (1 new)
- DAQ upgrade to 5 kHz

Collaboration

- •79 collaborators from 22 institutions.
- •Strong overlap with SANE, Semi-SANE, polarized Compton experiments
- •Expertise in BigCal, BETA, HMS, polarized target, polarimetry, data analysis.
- •Two young enthusiastic spokespersons (one did thesis on g_{1d}) that can carry polarized target physics into 12 GeV era.
- •THANKS to D. Stamenov and A Siderov of LSS group for theory support

Summary

- •Definitive measurements of g_{1d} in DIS range accessible at Jlab.
- Significant improvement in knowledge of polarized gluons distributions
- Improved measurements of Higher Twist
- •Test of ⁶Li as polarized deuteron: important for interpretation of high Q² data from SLAC and COMPASS.
- •Relatively inexpensive and low impact experiment if done in conjunction with SANE and/or Semi-SANE

Backup Slides

Proton plus neutron as "deuteron"

- Alternative to deuteron target to obtain isoscaler combination is to add free proton plus neutron extracted from ³He
- Due to scale factor systematic errors, resulting errors larger than for an actual deuteron target.
- •Projected errors from SANE plus Hall A d₂ experiment shown on next slide (blue). Existing Hall B plus A data also shown.
- On other hand, allows test of ³He as polarized neutron target

Proton plus neutron as "deuteron"

Pion, e+, radiative corrections

	$< Q^2 >$	Pair symm.	π/e	f_{RC}	A_{RC}
0.175	1.4	15%	10%	0.90	-0.024
0.25	1.9	10%	8%	0.95	-0.019
0.35	2.5	6%	4%	0.97	-0.016
0.45	3.0	2%	1%	0.98	-0.012
0.55	3.7	1%	< 1%	0.99	-0.007

Sensitivity of g_1^d to the gluon polarization

D. Stamenov

In QCD, the NLO pQCD (leading twist) contribution to the nucleon spin structure function g_1 is usually written in the following way:

$$g_1(x,Q^2)_{\text{PQCD}} = \frac{1}{2} \sum_{q}^{N_f} \epsilon_q^2 [(\Delta q + \Delta \bar{q}) \otimes (1 + \frac{\alpha_s(Q^2)}{2\pi} \delta C_q) + \frac{\alpha_s(Q^2)}{2\pi} \Delta G \otimes \frac{\delta C_G}{N_f}], \quad (1)$$

where $\Delta q(x,Q^2)$, $\Delta \bar{q}(x,Q^2)$ and $\Delta G(x,Q^2)$ are quark, anti-quark and gluon polarized densities in the proton, which evolve in Q^2 according to the spin-dependent NLO DGLAP equations. $\delta C(x)_{q,G}$ are the NLO spin-dependent Wilson coefficient functions and the symbol \oslash denotes the usual convolution in Bjorken x space. N_f is the number of active flavors (in the present analyses N_f = 3).

In order to understand better the sensitivity of g_1^d to the gluon polarization it is useful to re-write the expressions for the proton and neutron spin structure functions in terms of the non-singlets $\Delta q_3(x,Q^2)$ and $\Delta q_8(x,Q^2)$, and the singlet $\Delta \Sigma(x,Q^2)$:

$$g_1^{p(n)}(x,Q^2) = \frac{1}{9} \left[\left(\pm \frac{3}{4} \Delta q_3 + \frac{1}{4} \Delta q_8 + \Delta \Sigma \right) \oslash \left(1 + \frac{\alpha_s(Q^2)}{2\pi} \delta C_q \right) + \frac{\alpha_s(Q^2)}{2\pi} \Delta G \oslash \delta C_G \right] \tag{2}$$

where

$$\Delta q_3 = (\Delta u + \Delta \bar{u}) - (\Delta d + \Delta \bar{d}),$$

$$\Delta q_8 = (\Delta + \Delta \bar{u}) + (\Delta d + \Delta \bar{d}) - 2(\Delta s + \Delta \bar{s}),$$

$$\Delta \Sigma = (\Delta u + \Delta \bar{u}) + (\Delta d + \Delta \bar{d}) + (\Delta s + \Delta \bar{s}).$$
(3)

As a result, the non-singlet $\Delta q_3(x,Q^2)$ term disappears from g_1^d

$$g_1^d(x,Q^2) = \frac{1}{9} \left[\left(\frac{1}{4} \Delta q_8 + \Delta \Sigma \right) \oslash \left(1 + \frac{\alpha_s(Q^2)}{2\pi} \delta C_q \right) + \frac{\alpha_s(Q^2)}{2\pi} \Delta G \oslash \delta C_G \right] (1 - 1.5\omega_d). \tag{4}$$

Note that the non-singlet $\Delta q_3(x,Q^2)$ is approximately twice larger than $\Delta q_8(x,Q^2)$ (see Fig. 1 and Fig. 2). In addition, its contribution to $g_1^{p(n)}$ is multiplied by factor of 3. As a result, the relative contribution of the polarized gluon density to g_1^d is much larger than the corresponding one to $g_1^{p(n)}$. So, the data on g_1^d should be more helpful for the better determination of the gluon polarization.

Impact CLAS 6 GeV and planned 12 GeV

